Remote Sensing for Agricultural Applications: Principles and Techniques (2023-2024) Instructor: Prof. Tao Cheng (<u>tcheng@njau.edu.cn</u>). Nanjing Agricultural University

Lecture 9: Hyperspectral remote sensing

December 20, 2022

Outline

- Introduction to hyperspectral remote sensing
- Hyperspectral analysis techniques
 - 1. Dimensionality reduction
 - 2. Spectral similarity
 - 3. Spectral mixture analysis
 - 4. Spectral indices
 - 5. Continuum removal
 - 6. Spectral derivative
 - 7. Wavelet analysis
- Purpose:
 - to learn about major research topics in the field of hyperspectral remote sensing
 - to understand what can be done with hyperspectral data

Concepts

- Spectroscopy
 - "Spectroscopy is the study of light as a function of wavelength that has been emitted, reflected or scattered from a solid, liquid, or gas." (Clark, 1999)
- Spectroscopy of vegetation
- Imaging spectroscopy
 - a new tool that can be used to map specific materials by detecting specific chemical bonds. (USGS Spectroscopy Lab)

Clark, R. N., Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in *Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences*, (A.N. Rencz, ed.) John Wiley and Sons, New York, p 3-58, 1999.

History of hyperspectral RS

(Figure from Goetz, 2009, RSE)

• The First Portable Field Reflectance Spectrometer, 1974

• Airborne instrument: First flight with AVIRIS, 1987

• The Portable Field Spectroradiometer, 2010s 4

Hyperspectral instruments

 We need more satellite hyperspectral instruments. Some countries are working on their hyperspectral missions.

Spaceborne instruments

SATELLITE PAYLOAD Nation	EO-1/ HYPERION United States	PROJECT FOR ON-BOARD AUTONOMY (PROBA)-1 CHRIS European Space Agency	GAOFEN-5 AHSI China	DESIS Germany	HYSIS India	PRISMA HSI Italy	ENMAP HSI Germany	ADVANCED LAND OBSERVING SATELLITE (ALOS)-3 HISUI Japan
Launch date	2000 (terminated in 2017)	2001	May 2018	August 2018	November 2018	March 2019	~2020	~2019
Orbit altitude (km)	705	550~670	705	400	630	615	652	626
Spectral range (µm)	0.4~2.5	0.4~1.05	0.39~2.51	0.4-1	0.4-2.5	0.4~2.5	0.42~2.45	0.4~2.5
Total number of bands	220	62	330	235	70 + 256	239	>240	185
Spectral resolution (nm)	10	1.25~11	5 (VNIR), 10 (SWIR)	2.55	10	<12	6.5 (VNIR), 10 (SWIR)	10 (VNIR), 12.5 (SWIR)
Ground sample distance (m)	30.38	17/34	30	30	30	30	30	30
Swath width (km)	7.7	13~15	60	30	30	30	30	30
Dispersive systems	Grating	Prism	Grating	Grating	-	Prism	Prism	Grating

TABLE 1. THE MAIN PARAMETERS OF ON-ORBIT AND PLANNED SPACEBORNE HYPERSPECTRAL SENSORS.

Airborne instruments

TABLE 1. PARAMETERS OF EIGHT HYPERSPECTR						
PARAMETER Altitude (km)	HYDICE 1.6	AVIRIS 20				
Spatial resolution (m)	0.75	20				
Spectral resolution (nm)	7-14	10				
Coverage (µm)	0.4-2.5	0.4-2.5				
Number of bands	210	224				
Data cube size (sample × lines × bands)	200 × 320 × 210	512 × 614 × 224				

.....

Bioucas-Dias et al. (2013)

Q1: why are hyperspectral satellite instruments fewer than multispectral ones?

Liu et al. (2019)

China's Gaofen-5

Acronym	Full name
AIUS	Atmospheric Infrared Ultra-spectral spectrometer
DPC	Directional Polarization Camera
<u>EMI</u>	Environment Monitoring Instrument
<u>GMI</u>	Greenhouse-gases Monitoring Instrument
<u>AHSI</u>	Advanced Hyperspectral Imager
VIMS	Visual and Infrared Multispectral Sensor

- Launch date of **GF-5/01**: May 8, 2018 ; Launch date of **GF-5/02**: Sep 7, 2021
- The world's first full-spectrum hyperspectral satellite for comprehensive observation of the **atmosphere** and **land**
- Equipped with six advanced observation payloads, such as shortwave infrared hyperspectral camera and a greenhouse gas detector
- AHSI: Advanced Hyperspectral Imager (Land observation)
 - Wavelength range: 0.4-2.5 μm; Spectral resolution: 5/10 nm; 320 bands
 - Swath: 60 km; spatial resolution: 30 m

Hyperspectral data

- Disadvantages of hyperspectral data:
 - Large data volume
 - Collinearity between bands
- Advantages of hyperspectral data
 - Detailed spectral information
 - Characterization of absorption features

1. Dimensionality reduction

- Data dimensionality
 - Dimensionality is the number of spectral bands
 - Neighboring bands are highly correlated
 - Can be reduced in order to increase data processing efficiency and decrease storage space

Dimensionality reduction

- Band selection (output: bands)
 - Select a subset of spectral bands
 - Sequential Forward Selection (SFS)
 - Sequential Backward Selection (SBS)
 - Sequential Forward Floating Selection (SFFS)
- Feature extraction (output: features)
 - Extract a small number of new spectral features from original bands
 - Principal component analysis (PCA)
 - Minimum noise fraction transformation (MNF)
 - Wavelet transform

Example: PCA

False color composite of Washing D.C. USA

ina 0 PC 1 PC 2 PC 3 PC 4

Benediktsson et al. (2005), TGRS, 43, 480-491.

2. Similarity measures

- How to compare pixel spectra?
- A measure of similarity between two spectra in k-dimensional space
- Spectral angle mapper (SAM):

$$D_{SAM}(X,Y) = \alpha \cos\left(\frac{\sum_{i=1}^{K} x_i y_i}{\sum_{i=1}^{K} x_i^2 \sum_{i=1}^{K} y_i^2}\right)$$

*x*_{*i*} and *y*_{*i*} are two spectra with *k* bands, respectively.

Figure 1. Spectral angle in two-dimensional space.

Similarity measures

Fig. 2. Two distance metrics used in hyperspectral processing. (a) SAM, θ . (b) EMD, Δ .

- SAM: angle-based distance between two vectors
- EMD: Euclidean distance between two vectors

3. Spectral mixing

- Why care about spectral mixing and spectral unmixing?
- The signal for a single pixel may come from many surface materials.

• There are a lot of mixed pixels in an image.

Keshava & Mustard, 2002

8. Endmember analysis of six-band spectra. (a) Reflectance spectra for two substances and shade; (b) image endmembers that tightly bound the variability but cause some spectra to reside the range of acceptable abundance values; (c) reference endmembers that enclose all spectra in a scene.

Spectral unmixing: endmembers

- Spectral unmixing can be addressed by decomposing each pixel spectrum into a number of surface constituents (endmembers) and their abundances.
- **Endmembers** are relatively pure materials such as water, healthy vegetation, stressed vegetation, and soil.
- Endmembers are defined spectrally as the vertices of the simplex enveloping the data cloud.

Linear spectral unmixing

$$\rho_b = \sum_{i=1}^n F_i \times \rho_{ib} + E_b \quad (1)$$

- $\boldsymbol{\rho}_{\boldsymbol{b}}$ is the reflectance of the pixel at band \boldsymbol{b}
- F_i is the fractional abundance of the endmember *i*
- ρ_{ib} describes the reflectance of endmember *i* at band *b*
- *b* is the band number
- *I* is the endmember number
- E_b is the error of the linear fit at band b
- k is the number of bands, n is the number of endmembers
- **RMS** Root mean square is the residual between estimated and observed reflectance for a given pixel.

$$RMS = \sqrt{\left(\frac{\sum_{b=1}^{k} (\rho_b - \rho_b')}{k}\right)^2}$$

For each band, we can have an equation like Eq. (1). Such that, a linear equation system will be constructed.

Linear spectral unmixing

$$\rho_b = \sum_{i=1}^n F_i \times \rho_{ib} + E_b \quad (1)$$

$$RMS = \sqrt{\left(\frac{\sum_{b=1}^{k} (\rho_b - \rho_b)}{k}\right)^2}$$

- Linear spectral unmixing involves two steps:
 - Determining endmembers (to derive ρ_{ib})
 - Solving the linear equation system (to derive F_i)

Q3: what factors would affect the endmember variability of UAV images over a rice experimental site?

Spectral unmixing for hyperspectral images

An image processing pipeline

4. Spectral indices

• NDVI type:

$$NDVI = \frac{R_{\lambda_1} - R_{\lambda_2}}{R_{\lambda_1} + R_{\lambda_2}}$$

- RVI type: $RVI = \frac{R_{\lambda_1}}{R_{\lambda_2}}$
- From many random two-band combinations, select the optimal spectral index that exhibits the best correlation with the response variable.

Narrow-band vegetation indices (VIs)

$NDVI = (R\lambda 1 - R\lambda 2) / (R\lambda 1 + R\lambda 2)$

- Thousands of narrow-bands,
- Millions of band combinations
- One of the earliest R² contour maps for VI optimization

- Sensitive bands or regions are determined for sensor development
- Empirical models are built for converting spectral measurements to physical values
- Disadvantages:
 - Distracted by excessive band combinations
 - Spectral information is not fully used (> 2~3 bands?)

Q4: why do we need narrow-band VIs over existing broad-band VIs?

Hyperspectral vegetation indices and their relationships with agricultural crop characteristics By: Thenkabail, PS; Smith, RB; De Pauw, E REMOTE SENSING OF ENVIRONMENT Volume: 71 Issue: 2 Pages: 158-182 Published: FEB 2000 Times Cited: 699 (from Web of Science Core Collection)

VIs for canopy-level growth monitoring

- Well accepted by agronomists and remote sensing specialists
- The most commonly used approach: Spectral vegetation index (VI)
- Collect VI data with portable multispectral or hyperspectral sensors
- able ectral
- Many VIs have been developed

CGMD 302 (NETCIA)

Yao et al. (2010). Int. J. Applied Earth Obs. & Geoinfo. 12, 89-100.

5. Continuum removal analysis

- Isolation of individual absorption features
- Enhancement of absorption and suppression of background
- Determination of continuum endpoints is critical
- Many studies for chlorophyll absorptions, but fewer for N, water, dry matter Constituents
- Absorption features of fresh foliage is not obvious in the SWIR region.

Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

Times Cited: 566 (from Web of Science Core Collection)

Usage Count 🛩

By: Kokaly, RF; Clark, RN

REMOTE SENSING OF ENVIRONMENT Volume: 67 Issue: 3 Pages: 267-287 Published: MAR 1999

5. Continuum removal analysis

AVIRIS-derived canopy spectra of two tree species: Lodgepole Pine vs Douglas Fir

Continuum:

Identify the absorption feature of interest A simple way is to use a linear segment enveloping the absorption feature of interest

• Continuum removal:

 Dividing the original reflectance spectrum by the corresponding continuum line

$$R_c = \frac{R}{R_c}$$

Band depth

$$D = 1 - R_{cr}$$

Normalization of band depth

$$D' = \frac{D}{D_c}$$
 Band depth at center

6. Spectral derivative analysis

- Derivatives in spectroscopy:
 - Enhance spectral features of interest
- The first derivative of a reflectance spectra:

 $-\rho'(\lambda_i) = \frac{\rho(\lambda_{i+1}) - \rho(\lambda_i)}{\Delta \lambda}$ (Dawson & Curran, 1998, IJRS)

- Smoothing is needed prior to taking derivatives
- Helps reduce the effect of soil background
- Derivatives are sensitive to noise in spectral data

Q5: why is derivative analysis useful for reducing soil signals in vegetation analysis?

Derivative analysis of hyperspectral data By: Tsai, F; Philpot, W REMOTE SENSING OF ENVIRONMENT Volume: 66 Issue: 1 Pages: 41-51 Published: OCT 1998

Times Cited: 340 (from Web of Science Core Collection)

6. Spectral derivative analysis

- Derivatives in spectroscopy:
 - Enhance spectral features of interest
- The first derivative of a reflectance spectra:

$$-\rho'(\lambda_i) = \frac{\rho(\lambda_{i+1}) - \rho(\lambda_i)}{\Delta}$$

- Smoothing is needed prior to taking derivatives
- Helps reduce the effect of soil background

Derivatives for red edge positions

- Red edge position (REP)
 - The wavelength of the max first derivative in the red edge region
 - Double peaks led to discontinuity in REP/N relationship
 - New algorithms are needed to solve the discontinuity problem

Derivative analysis

- A good smoothing algorithm is required ٠
- Derive spectra become shorter at larger band separations (windows) •
- Multiple windows for multi-scale analysis? ٠

40nm

20 nm

5nm

7. Wavelet analysis

- Discrete (DWT) vs continuous (CWT)
- Results of CWT are easier to interpret than those of DWT
- Many vegetation studies using DWT or CWT
- Physical interpretation of CWT results is the key

CWT & DWT of a reflectance spectrum of vegetation, from (Blackburn & Ferwerda, 2008, 112, 1614-1632.)

Continuous wavelet spectral analysis (CWSA)

- CWSA:
 - continuous wavelet analysis of hyperspectral data
 - decompose a reflectance spectrum into a number of scale components for analyzing spectral variation over various scales
 - used for detecting spectral changes

$$W_r(a,b) = r(\lambda)^{\otimes} \psi_a(b) = r(\lambda)^* \psi_a(-b) = \int_{\lambda_1}^{\lambda_2} r(\lambda) \frac{1}{\sqrt{a}} \psi(\frac{\lambda-b}{a}) d\lambda$$

* Correlation

⊗ Convolution

Choice of wavelet function

- Convolution with a DoG2 =
 - 1. convolution with a Gaussian function
 - 2. taking the 2nd derivative
- Using DoG2 as the wavelet function:
 - To avoid taking another smoothing procedure
 - To match absorption features in vegetation reflectance spectra

$$W_r(a,b) = r(\lambda) * \psi_a(-b)$$

Continuous wavelet transform (CWT)

30

Workflow of the CWSA methodology

Wavelet features vs. spectral indices

• Extraction of optimal wavelet features is similar to that of spectral indices

Q6: how to use wavelet features?

Spectroscopic determination of leaf water content using continuous wavelet analysis

By: Cheng, T.; Rivard, B.; Sanchez-Azofeifa, A.

REMOTE SENSING OF ENVIRONMENT Volume: 115 Issue: 2 Pages: 659-670 Published: FEB 15 2011

Times Cited: 115 (from Web of Science Core Collection)

Wavelet features vs. spectral indices

- The top 1% wavelet features are less scattered than VIs, with better correspondence to N absorption features
- Based on SWIR bands, wavelet features outperformed VIs for N mass estimation

Li et al. (2018). Plant Methods. 14:76

Wavelet-based red edge position (WREP)

• WREP: a new algorithm to extract red edge position based on wavelet transformed spectra

<u>Principle:</u> wavelet transform (2nd DoG) -> zero-crossing point -> maximum first derivative -> REP

Li et al., (2017). ISPRS Journal of Photogrammetry and Remote Sensing, 129, 103-117.

Discussion

- Which technique to use?
 - Purpose
 - Experience
 - Understanding

Further reading

- USGS Spectroscopy Lab
 - <u>http://speclab.cr.usgs.gov/index.html</u>
- DIP textbook Chapter 11
- References:
 - Asner et al., (2008), Remote Sensing of Environment, vol. 112, 1912-1926.
 - Blackburn & Ferwerda, (2008), Remote Sensing of Environment, vol. 112, 1614-1632.
 - Cheng et al. (2011), Remote Sensing of Environment, vol. 115, 659-670.
 - Cho & Skidmore. (2006), Remote Sensing of Environment, vol. 101, 181-193.
 - Hansen & Schjoerring. (2003), Remote Sensing of Environment, vol. 86, 542-553.
 - Kokaly. (2001), Remote Sensing of Environment, vol. 75, 153-161.
 - Kokaly & Clark. (1999), Remote Sensing of Environment, vol. 67, 267-287.
 - Kokaly et al. (2003), Remote Sensing of Environment, vol. 84, 437-456.
 - Keshava. (2004), IEEE TGRS, vol. 42, 1552-1565.
 - Keshava & Mustard. (2002), IEEE Signal Processing Magazine, January, 44-57.
 - Shaw & Burke. (2003). Lincoln Laboratory Journal, vol. 14, 3-28.

