Remote Sensing for Agricultural Applications: Principles and Techniques (2023-2024)
Instructor: Prof. Tao Cheng (tcheng@njau.edu.cn). Nanjing Agricultural University
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* Introduction to hyperspectral remote sensing

* Hyperspectral analysis techniques
Dimensionality reduction

Spectral similarity

Spectral mixture analysis

Spectral indices

Continuum removal

Spectral derivative
. Wavelet analysis
* Purpose:
— to learn about major research topics in the field of hyperspectral remote
sensing
— to understand what can be done with hyperspectral data
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Concepts

* Spectroscopy

— “Spectroscopy is the study of light as a
function of wavelength that has been o i 3
emitted, reflected or scattered from a SR ssor
solid, liquid, or gas.” (Clark, 1999)

» Spectroscopy of vegetation

* Imaging spectroscopy

— a new tool that can be used to map
specific
materials by detecting e g sl
specific chemical bonds. (USGS
Spectroscopy Lab)

Spectral
dimension
| ——| 4

reflectance

Clark, R. N., Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in Manual of Remote Sensing, Volume 3,
Remote Sensing for the Earth Sciences, (A.N. Rencz, ed.) John Wiley and Sons, New York, p 3-58, 1999.
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History of hyperspectral RS

Total Publications

9,113 e Published HRS articles each year

900 ~{
800+
700 -

800 —

Topic: hyperspectral remote sensing
WoS Core Collection 2001-2020

2010 2011 2012 2013 2014 2015 2015 201? 2018 2019

(Figure from Goetz, 2009, RSE)

* The First Portable Field Reflectance
Spectrometer, 1974

blihd it bl b d i it ] bt 1P kbbbt

e Airborne instrument: First flight with AVIRIS, 1987  The Portable Field Spectroradiometer, 2010s 4



Hyperspectral instruments

* We need more satellite hyperspectral
instruments. Some countries are working on

their hyperspectral missions.

Spaceborne instruments

TABLE 1. THE MAIN PARAMETERS OF ON-ORBIT AND PLANNED SPACEBORNE HYPERSPECTRAL SENSORS.

SATELLITE EO-1/

PAYLOAD HYPERION

Nation United
States

Launch date 2000
(terminated
in 2017)

Orbit altitude (km) 705

Spectral range (um) 0.4-25
Total number of 220
bands

Spectral resolution 10
(nm)

Ground sample
distance (m)

Swath width (km) 7.7
Dispersive systems Grating

30.38

Liu et al. (2019)

PROJECT FOR
ON-BOARD
AUTONOMY
(PROBA)-1
CHRIS
European
Space Agency
2001

550~670
0.4~1.05
62

1.25~11
17/34

13~15

Prism

GAOFEN-5
AHSI

China

May 2018

705
0.39~2.51
330

5 (VNIR),
10 (SWIR)

30

60
Grating

DESIS
Germany

August 2018
400

0.4-1
235

255
30

30
Grating

HYSIS
India

November 2018

630
04-25
70 + 256

10

30

30

PRISMA HSI ENMAP HSI

-------------

italy

March 2019

615
0.4-25
239

<12

30

30

Prism

652
0.42-2.45
>240

6.5 (VNIR),
10 (SWIR)

30

30

Prism

ADVANCED
LAND
OBSERVING
SATELLITE
(ALOS)-3 HISUI
Japan

~2019

626
0.4-25
185

10 (VNIR),
12.5 (SWIR)

30

30
Grating

Airborne instruments

TABLE 1. PARAMETERS OF EIGHT HYPERSPECTRAL

PARAMETER HYDICE ANIRIS
Altitude (k) 16 20
spatial resolution jm) 0.75 20
spectral resolution ¢{nm) 7-14 10
Coverage (um) 0.4-25 0.4-25
Number of bands 210 224

Data cube size 200 = 320 512 = 614

(sample = lines = bands) = 210 = 224

Bioucas-Dias et al. (2013)

Q1: why are hyperspectral
satellite instruments fewer
than multispectral ones?




China’s Gaofen-5

«vi i Acronym Full name
AIUS Atmospheric Infrared Ultra-spectral spectrometer
DPC Directional Polarization Camera
EMI Environment Monitoring Instrument
GMI Greenhouse-gases Monitoring Instrument
AHSI Advanced Hyperspectral Imager
VIMS Visual and Infrared Multispectral Sensor

* lLaunch date of GF-5/01: May 8, 2018 ; Launch date of GF-5/02: Sep 7, 2021

 The world's first full-spectrum hyperspectral satellite for comprehensive
observation of the atmosphere and land

* Equipped with six advanced observation payloads, such as shortwave infrared
hyperspectral camera and a greenhouse gas detector

e AHSI: Advanced Hyperspectral Imager (Land observation)

— Wavelength range: 0.4-2.5 um; Spectral resolution: 5/10 nm; 320 bands
— Swath: 60 km; spatial resolution: 30 m
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https://www.wmo-sat.info/oscar/instruments/view/1179
https://www.wmo-sat.info/oscar/instruments/view/1180
https://www.wmo-sat.info/oscar/instruments/view/1190
https://www.wmo-sat.info/oscar/instruments/view/1191

Hyperspectral data

Three-dimensional
hypercube is

. assembled by stacking

= two-dimensional

e Disadvantages of
hyperspectral data:
— Large data volume
— Collinearity between bands

* Advantages of hyperspectral data
— Detailed spectral information

— Characterization of absorption
features

0.4 pm Wavelength() — — 25 pm

@ Water-vapor absorption bands

Shaw & Burke (2003)



1. Dimensionality reduction

'XVIRIS Trvage of Noffett Field, €A

* Data dimensionality

— Dimensionality is the number of spectral
bands

— Neighboring bands are highly correlated

— Can be reduced in order to increase data
processing efficiency and decrease
storage space

A correlation matrix 8



Dimensionality reduction

* Band selection (output: bands)
— Select a subset of spectral bands
— Sequential Forward Selection (SFS)
— Sequential Backward Selection (SBS)
— Sequential Forward Floating Selection (SFFS)

* Feature extraction (output: features)
— Extract a small number of new spectral features from original bands
— Principal component analysis (PCA)
— Minimum noise fraction transformation (MNF)
— Wavelet transform

Q2: what is the difference between band selection and feature extraction?




Example: PCA

False color
composite of
Washing D.C. USA

Benediktsson et al. (2005), TGRS, 43, 480-491. PC1 PC?2

PC3

PC4
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2. Similarity measures

* How to compare pixel spectra?

* A measure of similarity between two spectra in k-dimensional
space

e Spectral angle mapper (SAM):

ZiKzl %Y,

Z iK=1 Xi2 Z iK=1 yi2 a

xiand yiare two spectra with k bands, respectively.

>

Feature 2

D, (X,Y)=acos

B
Feature 1

Figure 1. Spectral angle in two-dimensional space.

11



Similarity measures

(b)

Fig. 2. Two distance metrics used in hyperspectral processing. (a) SAM. 6. (b)

 SAM: angle-based distance between two vectors
 EMD: Euclidean distance between two vectors

12



3. Spectral mixing

Why care about spectral
mixing and spectral
unmixing?

The signal for a single
pixel may come from
many surface materials.

There are a lot of mixed
pixels in an image.

i 3
. mges

(a)

o7 Green Viegetation
osl- —&— Gabbro
—%— Shade

0.5 1 1.5 2
Wavelength (mim}
@)

Refectance TM Channel 4

Reflectance TM Channel 4

Keshava & Mustard, 2002

A 8. Endmember analysis of six-band spedra. (o) Reflectonce

spedra for two substances and shade; (b) imoge endmembers
side the range of acceptable abundance valwes; {c) reference
endmembers that enclose all spectra in a scene.
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Spectral unmixing: endmembers

o
8

eflectance (%)

R

1Dolomitic Marble

05 1.0 1.5 2.0 25 05 1.0
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75
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20 2.5

Spectral unmixing can be addressed by decomposing each pixel
spectrum into a number of surface constituents (endmembers) and their
abundances.

Endmembers are relatively pure materials such as water, healthy
vegetation, stressed vegetation, and soil.

Endmembers are defined spectrally as the vertices of the simplex
enveloping the data cloud.

Band Y

Band X

A, B and C are endmembers.

14



Linear spectral unmixing

RMS

1)

Pb s the reflectance of the pixel at band b
For each band, we can have

Fi is the fractional abundance of the endmember | an equation like Eg. (1). Such
P _ _ that, a linear equation system
ib  describes the reflectance of endmember i at band b will be constructed.

b is the band number
i is the endmember number
Eb is the error of the linear fit at band b

k is the number of bands, n is the number of endmembers

Root mean square is the residual between estimated and observed reflectance
for a given pixel.
15



Linear spectral unmixing

(1)

 Linear spectral unmixing involves two steps:
— Determining endmembers (to derive pi)
— Solving the linear equation system (to derive F))

Q3: what factors would affect the endmember variability
of UAV images over arice experimental site?

16



Spectral unmixing for hyperspectral images

Reflectance | Data/dimension
™ reduction

Radiance Atmospheric
compensation

j<Kbands &

Detection
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An image processing pipeline

17
Shaw & Burke (2003), LLJ, 1-28.



4. Spectral indices

LA R?
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How to determine A;and 4,?

Hansen & Schjoerring (2003), RSE
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* NDVItype:

NDVI R~ R
_R11+R12
* RVItype
Ry,
RVI =5~
A

From many random two-band combinations,
select the optimal spectral index that exhibits
the best correlation with the response variable.

18



Narrow-band vegetation indices (VIs)

NDVI=

V02 WU

(RA1—RA2) /(RA1+RA2)

ond NOWY v bomeis

* Advantages:

— Sensitive bands or regions are determined for
sensor development

— Empirical models are built for converting spectral
measurements to physical values

* Disadvantages:

— Distracted by excessive band
combinations

— Spectral information is not fully used (> 2~3

?
Thousands of narrow-bands, bands: )
Millions of band combinations
One of the earliest R2 contour maps for VI Q4: Why do we need narrow-band Vls
optimization over existing broad-band VIs?
Hyperspectral vegetation indices and their relationships with agricultural crop characteristics Times Cited: 699
By: Thenkabail, PS; Smith, RB; De Pauw, E 'L’;”;C‘:’; gf’f Sclence Core

REMOTE SENSING OF ENVIRONMENT Volume: 71 Issue:2 Pages: 158-182 Published: FEB 2000

19
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VIs for canopy-level growth monitoring

Low density low
nitrogen (D2N1)

D2:40cm

Low density high
nitrogen (D2N3)
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High density low |94 .
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NDSI (Rgw.R3)

Yao et al. (2010). Int. J. Applied Earth Obs. & Geoinfo. 12, 89-100.

Well accepted by agronomists and

remote sensing specialists

The most commonly used approach:

Spectral vegetation index (VI)

Collect VI data with portable

multispectral or hyperspectral
sensors

Many VIs have been developed

CGMD 302 (NETCIA)

Spectral data
collection

0

Band optimization &
V1 construction

<

| Model establishment

<

| Model application

20



5. Continuum removal analysis

Reflectance

ontinuum Removed Reflectance

C
w

o

Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features
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and stepwise multiple linear regression

By: Kokaly, RF; Clark, RN

REMOTE SENSING OF ENVIRONMENT Volume: 67 Issue:3 Pages: 267-287 Published: MAR 1999

Wavelength (um)

Isolation of individual absorption features

Enhancement of absorption and suppression of
background

Determination of continuum endpoints is critical

Many studies for chlorophyll absorptions, but fewer
for N, water, dry matter Constituents

Absorption features of fresh foliage is not obvious in
the SWIR region.

Times Cited: 566
(from Web of Science Core
Collection)

Usage Count v

21



5. Continuum

removal analysis

b
L N Continuum Line M
: * Continuum removal:
2 °f — Dividing the original reflectance spectrum by
éos d the corresponding continuum line
Sudf .
c R —_
Sl ¢ R,
0.50 0.55 0.60 0.65 0.70 0.75
ngth (um)
- _ Heveenan — Band depth
AVIRIS-derived canopy spectra of two tree
species: Lodgepole Pine vs Douglas Fir
D = 1 _Rc'r
Continuum: — Normalization of band depth
Identify the absorption feature of interest D

A simple way is to use a linear segment
enveloping the absorption feature of
interest

Kokaly et al. (2003), RSE

D = D_ Band depth at center
c*

22



6. Spectral derivative analysis

Derivatives in spectroscopy:

— Enhance spectral features of interest

The first derivative of a reflectance spectra:

, A —p (1:
— p (Al) = p( l+A121 At ) (Dawson & Curran, 1998, 1JRS)

Smoothing is needed prior to taking derivatives

Helps reduce the effect of soil background

Derivatives are sensitive to noise in spectral data

o
©

Reflectance
o o
E= (o))

0.2

0.0

/

P~ T— Conter (ary)

[ —— Conifer (green)

— Dry grass
Broadleaf

1.0

1.5
Wavelength (um)

Q5: why is derivative analysis useful for reducing soil signals in vegetation analysis?

Derivative analysis of hyperspectral data
By: Tsai, F; Philpot, W
REMOTE SENSING OF ENVIRONMENT Volume: 66 Issue:1 Pages:41-51 Published: OCT 1998

Times Cited: 340

(from WebofScience Core

Collection)
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6. Spectral derivative analysis

Derivatives in spectroscopy:

— Enhance spectral features of interest

The first derivative of a reflectance spectra:

' i —p(A;
N p@l :p@+1A) o(;)

Smoothing is needed prior to taking derivatives
Helps reduce the effect of soil background
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Asner et al. RSE (2008)




Derivatives for red edge positions

First derivative reflectance 1

First derivative reflectance

First derivative reflectance
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(Cho & Skidmore, 2006, RSE, 101, 181-193.)
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 Red edge position (REP)

— The wavelength of the max
first derivative in the red edge
region

— Double peaks led to
discontinuity in REP/N
relationship

— New algorithms are

needed to solve the
discontinuity problem
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Derivative analysis

clarity’

-'5'1'_ T:-:Z:.'J I

Offs

v

deriv

= T

firs

« A good smoothing algorithm is required
» Derive spectra become shorter at larger band separations (windows)

« Multiple windows for multi-scale analysis?



/. Wavelet analysis

REFLECTANCE INPUT

REFLECTANCE INPUT

05 Original spectru m 05 Original spectrum
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0+ 0+
400 900 1400 1900 2400 400 900 1400 1900 2400
Scale 2 Det. Level 1
W—NJ 1 51 101 151 201
Scale 4 Det. Level 2
rg\/\‘\/v__&\//\/"k’—/\—_-j 1 21 41 61 81 101
W Det. Level 6
1 3 5 7 9 1 13 15
Scale 128
\/\_/~\/ Det. Level 7
400 900 1400 1900 2400 . ; . . . .
Wavelength (nm) 1 3 5 7 9 1

CWT & DWT of a reflectance spectrum of vegetation, from

(Blackburn & Ferwerda, 2008, 112, 1614-1632.)

Discrete (DWT) vs continuous
(CWT)

Results of CWT are easier to
Interpret than those of DWT

Many vegetation studies using
DWT or CWT

Physical interpretation of CWT
results is the key



Continuous wavelet spectral analysis (CWSA)

* CWSA:
— continuous wavelet analysis of hyperspectral data

— decompose a reflectance spectrum into a number of scale components
for analyzing spectral variation over various scales

— used for detecting spectral changes

0.6

04 r

Reflectance

0.2

%900 1100 1800 2500

Wavelength (nm)

® Convolution W;(CL, b) — T(fl)@wa(b} — r(&)* wa (—b} — J’

* Correlation

a 28



Choice of wavelet function

The Gaussian family: order=1, 2, 3, 4, 5.

010 010}
g0 0.058 |
.08 | 005 o5t
0.05 | 0.00
Q.00 0.00 0.00
005 [ Q.00 -0.058 | oosy -0.05 |
............... oosb M. N | el , , 'G'm',,,,,,,,,,,,,,, 00|
= o 2 2 o =z = on o =2 o =z
e Convolution with a DoG2 = W, (@ b)=r(A)* Ya(—b)
r ) - a

— 1. convolution with a Gaussian function
— 2. taking the 2nd derivative

e Using DoG?2 as the wavelet function:
— To avoid taking another smoothing procedure

— Tomatch absorption features in vegetation reflectance spectra



Continuous wavelet transform (CWT)

Reflectance

'— Reflectance|

0.4
0.3
0.2

0.1 J\}

0.0

500 1000 1500 2000 2500
Wavelength (nm)

Reflectance domain

CWT

Wavelet power scalogram

— Reflectance
—Scale 3
—Scale 7

» Band by wavelength
» Reflectance:
* Spectral value at a
band (>0)

500

1000 1500 2000 25'06)\
Wavelength (nm)

0.02

0.01

{ 0.00

o
o
—

-0.02

500 1000 1500 2000 2500

Wavelength (nm)

Wavelet domain

Normalized values

» Wavelet feature by wavelength and scale
* Also called wavelet coefficient

» Wavelet power:
* Spectral value at a wavelet feature (<0, =0, or >0)
* Similarity of a spectral segment to a wavelet

» Scale
* Low scale: detail (absorption features and noise)
* High scale: overall pattern (continuum or baseline)
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Cheng et al., (2010)

Workflow of the CWSA methodology

(A). Wavelet power scalograms for individual samples
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Wavelet features vs. spectral indices

3|eos

350 580 750 950 1150

250 :
3 .7
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E 164
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78 .
(Yao et al., 2010)
35

50 780 1210 1640 2070 2500
A

Spectroscopic determination of leaf water content using continuous wavelet analysis
By: Cheng, T.; Rivard, B.; Sanchez-Azofeifa, A.

1350 1550 1750 1950
Wavelength (nm)

e Extraction of optimal wavelet features is
similar to that of spectral indices

Q6: how to use wavelet features?

Times Cited: 115
(from WebofScience Core
Collection)

REMOTE SENSING OF ENVIRONMENT Volume: 115 Issue:2 Pages: 659-670 Published: FEB 15 2011
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Wavelet features vs. spectral indices
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» The top 1% wavelet features are less scattered than VIs, with better
correspondence to N absorption features

» Based on SWIR bands, wavelet features outperformed VIs for N mass estimation

33

Li et al. (2018). Plant Methods. 14: 76



Wavelet-based red edge position (WREP)

«  WREP: a new algorithm to extract red edge position based on wavelet transformed spectra

Principle: wavelet transform (2" DoG) -> zero-crossing point -> maximum first derivative -> REP
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Lietal., (2017). ISPRS Journal of Photogrammetry and Remote Sensing, 129, 103-117.



Discussion

 Which technique to use?
— Purpose
— Experience
— Understanding
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Further reading

* USGS Spectroscopy Lab
— http://speclab.cr.usgs.gov/index.html

* DIP textbook Chapter 11

* References:
— Asneretal., (2008), Remote Sensing of Environment, vol. 112, 1912-1926.
— Blackburn & Ferwerda, (2008), Remote Sensing of Environment, vol. 112, 1614-1632.
— Chengetal. (2011), Remote Sensing of Environment, vol. 115, 659-670.
— Cho & Skidmore. (2006), Remote Sensing of Environment, vol. 101, 181-193.
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