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Outline
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• Introduction to hyperspectral remote sensing
• Hyperspectral analysis techniques

1. Dimensionality reduction
2. Spectral similarity
3. Spectral mixture analysis
4. Spectral indices
5. Continuum removal
6. Spectral derivative
7. Wavelet analysis

• Purpose:
– to learn about major research topics in the field of hyperspectral  remote

sensing
– to understand what can be done with hyperspectral data



Concepts
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• Spectroscopy
– “Spectroscopy is the study of  light as a 

function of  wavelength that has been  
emitted, reflected or  scattered from a 
solid, liquid,  or gas.” (Clark, 1999)

• Spectroscopy of vegetation

• Imaging spectroscopy
– a new tool that can be used  to map

specific
materials by detecting
specific chemical bonds.  (USGS 
Spectroscopy Lab)

Clark, R. N., Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in Manual of Remote Sensing, Volume 3,  
Remote Sensing for the Earth Sciences, (A.N. Rencz, ed.) John Wiley and Sons, New York, p 3-58, 1999.

Shaw & Burke (2003)



History of hyperspectral RS

4• Airborne instrument: First flight with AVIRIS, 1987

(Figure from Goetz, 2009, RSE)

Topic: hyperspectral remote sensing

WoS Core Collection 2001-2020

Published HRS articles each year

• The Portable Field Spectroradiometer, 2010s

• The First Portable Field  Reflectance 
Spectrometer,  1974



Hyperspectral instruments
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• We need more satellite  hyperspectral 
instruments. Some  countries are working on 
their  hyperspectral missions.

Bioucas-Dias et al. (2013)

Airborne instruments

Liu et al. (2019)

Spaceborne instruments

Q1: why are hyperspectral 

satellite instruments fewer 

than multispectral ones?



China’s Gaofen-5
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• Launch date of GF-5/01: May 8, 2018 ; Launch date of GF-5/02: Sep 7, 2021

• The world's first full-spectrum hyperspectral satellite for comprehensive
observation of the atmosphere and land

• Equipped with six advanced observation payloads, such as shortwave  infrared 
hyperspectral camera and a greenhouse gas detector

• AHSI: Advanced Hyperspectral Imager (Land observation)
– Wavelength range: 0.4-2.5 μm; Spectral resolution: 5/10 nm; 320 bands

– Swath: 60 km; spatial resolution: 30 m

Acronym Full name

AIUS Atmospheric Infrared Ultra-spectral spectrometer

DPC Directional Polarization Camera

EMI Environment Monitoring Instrument

GMI Greenhouse-gases Monitoring Instrument

AHSI Advanced Hyperspectral Imager

VIMS Visual and Infrared Multispectral Sensor

https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.n2yo.com/browse/?y=2018&amp;m=5
https://www.wmo-sat.info/oscar/instruments/view/1177
https://www.wmo-sat.info/oscar/instruments/view/1178
https://www.wmo-sat.info/oscar/instruments/view/1179
https://www.wmo-sat.info/oscar/instruments/view/1180
https://www.wmo-sat.info/oscar/instruments/view/1190
https://www.wmo-sat.info/oscar/instruments/view/1191


Hyperspectral data
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• Disadvantages of  
hyperspectral data:

– Large data volume

– Collinearity between bands

• Advantages of hyperspectral  data

– Detailed spectral information

– Characterization of absorption  
features

Shaw & Burke (2003)



1. Dimensionality reduction
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Figure from Jensen (2006)

A correlation matrix

• Data dimensionality

– Dimensionality is the number  of spectral
bands

– Neighboring bands are highly  correlated

– Can be reduced in order to  increase data 
processing  efficiency and decrease  
storage space



Dimensionality reduction
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• Band selection (output: bands)
– Select a subset of spectral bands
– Sequential Forward Selection (SFS)
– Sequential Backward Selection (SBS)
– Sequential Forward Floating Selection (SFFS)

• Feature extraction (output: features)
– Extract a small number of new spectral features from  original bands
– Principal component analysis (PCA)
– Minimum noise fraction transformation (MNF)
– Wavelet transform

Q2: what is the difference between band selection and feature extraction?



Example: PCA
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False color  
composite of  
Washing D.C.  USA

PC 1 PC 2 PC 3 PC 4Benediktsson et al. (2005), TGRS, 43, 480-491.



2. Similarity measures
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• How to compare pixel spectra?

• A measure of similarity between two spectra in k-dimensional
space

• Spectral angle mapper (SAM):

xi and yi are two spectra with k bands, respectively.
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Similarity measures
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• SAM: angle-based distance between two vectors

• EMD: Euclidean distance between two vectors



3. Spectral mixing
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• Why care about  spectral 
mixing and  spectral
unmixing?

• The signal for a  single 
pixel may  come from 
many  surface materials.

• There are a lot of mixed
pixels in an image.

Keshava & Mustard, 2002

Linear mixing

Non-linear mixing



Spectral unmixing: endmembers
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• Spectral unmixing can be addressed by decomposing each pixel  

spectrum into a number of surface constituents (endmembers) and  their

abundances.

• Endmembers are relatively pure materials such as water, healthy

vegetation, stressed vegetation, and soil.

• Endmembers are defined spectrally as the vertices of the simplex  

enveloping the data cloud.

A, B and C are endmembers.



Linear spectral unmixing
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is the reflectance of the pixel at band b𝝆b

Fi is the fractional abundance of the endmember i

describes the reflectance of endmember i at band b

is the band number

is the endmember number

is the error of the linear fit at band b

Root mean square is the residual between estimated and observed reflectance  

for a given pixel.

(1)

𝝆ib

b

i

Eb

k is the number of bands, n is the number of endmembers

RMS

For each band, we can have  

an equation like Eq. (1). Such  

that, a linear equation system  

will be constructed.
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Linear spectral unmixing
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• Linear spectral unmixing involves two steps:

– Determining endmembers (to derive 𝜌ib)

– Solving the linear equation system (to derive Fi)

Q3: what factors would affect the endmember variability 

of UAV images over a rice experimental site?

(1)
1

n
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i
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Spectral unmixing for hyperspectral images
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An image processing pipeline

Shaw & Burke (2003), LLJ, 1-28.



4. Spectral indices
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• NDVI type:

𝑅𝜆1 − 𝑅𝜆2
𝑁𝐷𝑉𝐼 =

𝑅𝜆1 + 𝑅𝜆2

• RVI type:
𝑅𝜆1

R𝑉𝐼 =
𝑅𝜆

2

𝑅2

How to determine 𝜆1 and𝜆2?

Hansen & Schjoerring (2003), RSE

• From many random two-band  combinations, 

select the optimal spectral index that  exhibits 

the best correlation with the response variable.



Narrow-band vegetation indices (VIs)
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• Thousands of narrow-bands,

• Millions of band combinations

• One of the earliest R2 contour maps for VI
optimization

• Advantages:

– Sensitive bands or regions are  determined for 
sensor development

– Empirical models are built for  converting spectral 
measurements  to physical values

• Disadvantages:
– Distracted by excessive band  

combinations

– Spectral information is not fully  used (> 2~3
bands?)

Q4: why do we need narrow-band VIs  

over existing broad-band VIs?

𝑁𝐷𝑉𝐼=  (𝑅𝜆1−𝑅𝜆2) /(𝑅𝜆1+𝑅𝜆2)



VIs for canopy-level growth monitoring
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• Well accepted by agronomists  and 

remote sensing specialists

• The most commonly used  approach: 

Spectral vegetation  index (VI)

• Collect VI data with portable 

multispectral or hyperspectral 

sensors

• Many VIs have been developed

CGMD 302 (NETCIA)

815 nm 

730 nm

Spectral data  

collection

Band optimization &  

VI construction

Model establishment

Model application

Yao et al. (2010). Int. J. Applied Earth Obs. & Geoinfo. 12, 89-100.



5. Continuum removal analysis

21

• Isolation of individual absorption features

• Enhancement of absorption and suppression of  

background

• Determination of continuum endpoints is critical

• Many studies for chlorophyll absorptions, but fewer  

for N, water, dry matter Constituents

• Absorption features of fresh foliage is not obvious in 

the SWIR region.



5. Continuum removal analysis
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• Continuum removal:
– Dividing the original reflectance spectrum by
the corresponding continuum line

– Normalization of band depth

𝐷′  =
𝐷

𝐷𝑐

𝑅𝑐 =
𝑅

𝑅𝑐

– Band depth

𝐷 = 1 −𝑅𝑐𝑟

Band depth at center

AVIRIS-derived canopy spectra of two tree  
species: Lodgepole Pine vs Douglas Fir

Kokaly et al. (2003), RSE

Continuum:
Identify the absorption feature of  interest
A simple way is to use a linear  segment 
enveloping the  absorption feature of
interest



6. Spectral derivative analysis
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Q5: why is derivative analysis  useful for reducing soil signals  in vegetation analysis?

– 𝜌′ 𝜆𝑖 =
𝜌( 𝜆𝑖+1) −𝜌 (𝜆𝑖)

Δ𝜆

• Smoothing is needed prior to taking derivatives

• Helps reduce the effect of soil background

• Derivatives are sensitive to noise in spectral data

(Dawson & Curran, 1998, IJRS)

• Derivatives in spectroscopy:

– Enhance spectral features of interest

• The first derivative of a reflectance spectra:



6. Spectral derivative analysis
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• Derivatives in spectroscopy:

– Enhance spectral features of interest

• The first derivative of a reflectance spectra:

– 𝜌′ 𝜆𝑖 = 𝜌 𝜆𝑖+1 −𝜌 𝜆𝑖

Δ

• Smoothing is needed prior to taking derivatives

• Helps reduce the effect of soil background

sitive to noise in spectr al data

Asner et al. RSE (2008)



Derivatives for red edge positions
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• Red edge position (REP)
– The wavelength of the  max 

first derivative in the  red edge
region

– Double peaks led to  
discontinuity in REP/N  
relationship

– New algorithms are  
needed to solve the 
discontinuity problem

(Cho & Skidmore, 2006, RSE, 101, 181-193.)



Derivative analysis
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• A good smoothing algorithm is required

• Derive spectra become shorter at larger band separations (windows)

• Multiple windows for multi-scale analysis?



7. Wavelet analysis
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CWT DWT

CWT & DWT of a reflectance spectrum of vegetation, from
(Blackburn & Ferwerda, 2008, 112, 1614-1632.)

• Discrete (DWT) vs continuous  

(CWT)

• Results of CWT are easier to

interpret than those of DWT

• Many vegetation studies using  

DWT or CWT

• Physical interpretation of CWT

results is the key



Continuous wavelet spectral analysis (CWSA)
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• CWSA:

– continuous wavelet analysis of hyperspectral data

– decompose a reflectance spectrum into a number of scale  components 
for analyzing spectral variation over various  scales

– used for detecting spectral changes

Convolution

∗ Correlation



Choice of wavelet function
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• Convolution with a DoG2 =
– 1. convolution with a Gaussian function

– 2. taking the 2nd derivative

• Using DoG2 as the wavelet function:

– To avoid taking another smoothing procedure

– To match absorption features in vegetation reflectance spectra

𝑊𝑟 (𝑎, 𝑏)= 𝑟(𝜆)∗ 𝜓𝑎(−𝑏)

• Wavelet function (DoG2):

The Gaussian family: order = 1, 2, 3, 4, 5.



Continuous wavelet transform (CWT)
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Wavelet power scalogram
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Reflectance domain

 Band by wavelength
 Reflectance:

• Spectral value at a  
band (>0)

Wavelet domain

 Wavelet feature by wavelength and scale
• Also called wavelet coefficient

 Wavelet power:
• Spectral value at a wavelet feature (<0, =0, or >0)
• Similarity of a spectral segment to a wavelet

 Scale
• Low scale: detail (absorption features and noise)
• High scale: overall pattern (continuum or baseline)



Workflow of the CWSA methodology
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Cheng et al., (2010)



Wavelet features vs. spectral indices
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(Yao et al., 2010)

• Extraction of optimal  wavelet features is 
similar  to that of spectral indices

Q6: how to use wavelet features?



Wavelet features vs. spectral indices
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Li et al. (2018). Plant Methods. 14: 76

Top 1% VIs

 The top 1% wavelet features are less scattered than VIs, with better  

correspondence to N absorption features

 Based on SWIR bands, wavelet features outperformed VIs for N mass estimation



Wavelet-based red edge position (WREP)
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Li et al., (2017). ISPRS Journal of Photogrammetry and Remote Sensing, 129, 103-117.

Leaf

REP(nm)

Canopy

REP(nm)

• WREP: a new algorithm to extract red edge position based on wavelet transformed spectra

Principle: wavelet transform (2nd DoG) -> zero-crossing point -> maximum first derivative -> REP



Discussion
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• Which technique to use?

– Purpose

– Experience

– Understanding



Further reading
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• USGS Spectroscopy Lab
– http://speclab.cr.usgs.gov/index.html

• DIP textbook Chapter 11

• References:
– Asner et al., (2008), Remote Sensing of Environment, vol. 112, 1912-1926.
– Blackburn & Ferwerda, (2008), Remote Sensing of Environment, vol. 112, 1614-1632.
– Cheng et al. (2011), Remote Sensing of Environment, vol. 115, 659-670.
– Cho & Skidmore. (2006),  Remote Sensing of Environment, vol. 101, 181-193.
– Hansen & Schjoerring. (2003), Remote Sensing of Environment, vol. 86, 542-553.
– Kokaly. (2001), Remote Sensing of Environment, vol. 75, 153-161.
– Kokaly & Clark. (1999), Remote Sensing of Environment, vol. 67, 267-287.
– Kokaly et al. (2003), Remote Sensing of Environment, vol. 84, 437-456.
– Keshava. (2004), IEEE TGRS, vol. 42, 1552-1565.
– Keshava & Mustard. (2002), IEEE Signal Processing Magazine, January, 44-57.
– Shaw & Burke. (2003). Lincoln Laboratory Journal, vol. 14, 3-28.
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